Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 38(17): 4226-4229, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35801913

RESUMO

SUMMARY: Accurate prediction of the subcellular locations (SLs) of proteins is a critical topic in protein science. In this study, we present SLPred, an ensemble-based multi-view and multi-label protein subcellular localization prediction tool. For a query protein sequence, SLPred provides predictions for nine main SLs using independent machine-learning models trained for each location. We used UniProtKB/Swiss-Prot human protein entries and their curated SL annotations as our source data. We connected all disjoint terms in the UniProt SL hierarchy based on the corresponding term relationships in the cellular component category of Gene Ontology and constructed a training dataset that is both reliable and large scale using the re-organized hierarchy. We tested SLPred on multiple benchmarking datasets including our-in house sets and compared its performance against six state-of-the-art methods. Results indicated that SLPred outperforms other tools in the majority of cases. AVAILABILITY AND IMPLEMENTATION: SLPred is available both as an open-access and user-friendly web-server (https://slpred.kansil.org) and a stand-alone tool (https://github.com/kansil/SLPred). All datasets used in this study are also available at https://slpred.kansil.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Proteínas , Humanos , Bases de Dados de Proteínas , Ontologia Genética , Proteínas/genética , Sequência de Aminoácidos , Transporte Proteico , Biologia Computacional/métodos
2.
J Gastrointest Cancer ; 52(4): 1266-1276, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34910274

RESUMO

PURPOSE: Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine. METHODS: In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system. RESULTS: Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCC-associated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs. CONCLUSIONS: We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.


Assuntos
Antineoplásicos/farmacologia , Inteligência Artificial , Carcinoma Hepatocelular/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Biologia Computacional , Humanos , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular
3.
Front Mol Biosci ; 8: 658906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195226

RESUMO

Owing to its clinical significance, modulation of functionally relevant amino acids in protein-protein complexes has attracted a great deal of attention. To this end, many approaches have been proposed to predict the partner-selecting amino acid positions in evolutionarily close complexes. These approaches can be grouped into sequence-based machine learning and structure-based energy-driven methods. In this work, we assessed these methods' ability to map the specificity-determining positions of Axl, a receptor tyrosine kinase involved in cancer progression and immune system diseases. For sequence-based predictions, we used SDPpred, Multi-RELIEF, and Sequence Harmony. For structure-based predictions, we utilized HADDOCK refinement and molecular dynamics simulations. As a result, we observed that (i) sequence-based methods overpredict partner-selecting residues of Axl and that (ii) combining Multi-RELIEF with HADDOCK-based predictions provides the key Axl residues, covered by the extensive molecular dynamics simulations. Expanding on these results, we propose that a sequence-structure-based approach is necessary to determine specificity-determining positions of Axl, which can guide the development of therapeutic molecules to combat Axl misregulation.

4.
Nucleic Acids Res ; 49(16): e96, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181736

RESUMO

Systemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource. CROssBAR is a comprehensive system that integrates large-scale biological/biomedical data from various resources and stores them in a NoSQL database. CROssBAR is enriched with the deep-learning-based prediction of relationships between numerous data entries, which is followed by the rigorous analysis of the enriched data to obtain biologically meaningful modules. These complex sets of entities and relationships are displayed to users via easy-to-interpret, interactive knowledge graphs within an open-access service. CROssBAR knowledge graphs incorporate relevant genes-proteins, molecular interactions, pathways, phenotypes, diseases, as well as known/predicted drugs and bioactive compounds, and they are constructed on-the-fly based on simple non-programmatic user queries. These intensely processed heterogeneous networks are expected to aid systems-level research, especially to infer biological mechanisms in relation to genes, proteins, their ligands, and diseases.


Assuntos
Biologia Computacional/métodos , Software , Bases de Dados de Compostos Químicos , Bases de Dados Genéticas , Aprendizado Profundo , Humanos
5.
Chem Sci ; 11(9): 2531-2557, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33209251

RESUMO

The identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at the input level instead of conventional descriptors that display limited performance. DEEPScreen learns complex features inherently from the 2-D representations, thus producing highly accurate predictions. The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the proposed approach and verified selected novel predictions through molecular docking analysis and literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3 phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use" prediction models, all datasets and the results of this study are available at ; https://github.com/cansyl/DEEPscreen.

7.
Bioinformatics ; 36(14): 4227-4230, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32407491

RESUMO

SUMMARY: iBioProVis is an interactive tool for visual analysis of the compound bioactivity space in the context of target proteins, drugs and drug candidate compounds. iBioProVis tool takes target protein identifiers and, optionally, compound SMILES as input, and uses the state-of-the-art non-linear dimensionality reduction method t-Distributed Stochastic Neighbor Embedding (t-SNE) to plot the distribution of compounds embedded in a 2D map, based on the similarity of structural properties of compounds and in the context of compounds' cognate targets. Similar compounds, which are embedded to proximate points on the 2D map, may bind the same or similar target proteins. Thus, iBioProVis can be used to easily observe the structural distribution of one or two target proteins' known ligands on the 2D compound space, and to infer new binders to the same protein, or to infer new potential target(s) for a compound of interest, based on this distribution. Principal component analysis (PCA) projection of the input compounds is also provided, Hence the user can interactively observe the same compound or a group of selected compounds which is projected by both PCA and embedded by t-SNE. iBioProVis also provides detailed information about drugs and drug candidate compounds through cross-references to widely used and well-known databases, in the form of linked table views. Two use-case studies were demonstrated, one being on angiotensin-converting enzyme 2 (ACE2) protein which is Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein receptor. ACE2 binding compounds and seven antiviral drugs were closely embedded in which two of them have been under clinical trial for Coronavirus disease 19 (COVID-19). AVAILABILITY AND IMPLEMENTATION: iBioProVis and its carefully filtered dataset are available at https://ibpv.kansil.org/ for public use. CONTACT: vatalay@metu.edu.tr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Moleculares , Peptidil Dipeptidase A/química , Software , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina/química , Antivirais/química , Betacoronavirus , COVID-19 , Infecções por Coronavirus , Humanos , Internet , Pandemias , Pneumonia Viral , Análise de Componente Principal , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 3/química , SARS-CoV-2 , Interface Usuário-Computador
8.
Brief Bioinform ; 20(5): 1878-1912, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30084866

RESUMO

The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Aprendizado Profundo , Descoberta de Drogas , Simulação por Computador
9.
BMC Bioinformatics ; 19(1): 334, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241466

RESUMO

BACKGROUND: The automated prediction of the enzymatic functions of uncharacterized proteins is a crucial topic in bioinformatics. Although several methods and tools have been proposed to classify enzymes, most of these studies are limited to specific functional classes and levels of the Enzyme Commission (EC) number hierarchy. Besides, most of the previous methods incorporated only a single input feature type, which limits the applicability to the wide functional space. Here, we proposed a novel enzymatic function prediction tool, ECPred, based on ensemble of machine learning classifiers. RESULTS: In ECPred, each EC number constituted an individual class and therefore, had an independent learning model. Enzyme vs. non-enzyme classification is incorporated into ECPred along with a hierarchical prediction approach exploiting the tree structure of the EC nomenclature. ECPred provides predictions for 858 EC numbers in total including 6 main classes, 55 subclass classes, 163 sub-subclass classes and 634 substrate classes. The proposed method is tested and compared with the state-of-the-art enzyme function prediction tools by using independent temporal hold-out and no-Pfam datasets constructed during this study. CONCLUSIONS: ECPred is presented both as a stand-alone and a web based tool to provide probabilistic enzymatic function predictions (at all five levels of EC) for uncharacterized protein sequences. Also, the datasets of this study will be a valuable resource for future benchmarking studies. ECPred is available for download, together with all of the datasets used in this study, at: https://github.com/cansyl/ECPred . ECPred webserver can be accessed through http://cansyl.metu.edu.tr/ECPred.html .


Assuntos
Biologia Computacional/métodos , Enzimas/classificação , Enzimas/metabolismo , Análise de Sequência de Proteína/métodos , Software , Terminologia como Assunto , Algoritmos , Humanos
10.
Proteins ; 86(2): 135-151, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098713

RESUMO

Recent advances in computing power and machine learning empower functional annotation of protein sequences and their transcript variations. Here, we present an automated prediction system UniGOPred, for GO annotations and a database of GO term predictions for proteomes of several organisms in UniProt Knowledgebase (UniProtKB). UniGOPred provides function predictions for 514 molecular function (MF), 2909 biological process (BP), and 438 cellular component (CC) GO terms for each protein sequence. UniGOPred covers nearly the whole functionality spectrum in Gene Ontology system and it can predict both generic and specific GO terms. UniGOPred was run on CAFA2 challenge target protein sequences and it is categorized within the top 10 best performing methods for the molecular function category. In addition, the performance of UniGOPred is higher compared to the baseline BLAST classifier in all categories of GO. UniGOPred predictions are compared with UniProtKB/TrEMBL database annotations as well. Furthermore, the proposed tool's ability to predict negatively associated GO terms that defines the functions that a protein does not possess, is discussed. UniGOPred annotations were also validated by case studies on PTEN protein variants experimentally and on CHD8 protein variants with literature. UniGOPred protein functional annotation system is available as an open access tool at http://cansyl.metu.edu.tr/UniGOPred.html.


Assuntos
Aprendizado de Máquina , PTEN Fosfo-Hidrolase/metabolismo , Proteômica/métodos , Animais , Bases de Dados de Proteínas , Ontologia Genética , Humanos , Modelos Biológicos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Análise de Sequência de Proteína , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...